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Abstract

Monitoring school performance increasingly uses sophisticated analytical techniques and
we investigate whether one such method, hierarchical growth modeling, yields
consistent school performance results when different metrics are used as the outcome
variable. Specifically we examine whether statistical and substantive inferences are
altered when using normal curve equivalents (NCEs) vs. scale scores. The results indicate
that the effect of the metric depends upon the evaluation objective. NCEs significantly
underestimate absolute growth, but NCEs and scale scores yield highly correlated (.9)
results based on mean initial status and growth estimates. Correlations between NCE
and scale score rankings, based on fitted school initial status and growth values are
generally over .94. Further, statistical and substantive results, using NCEs and scale
scores, pertaining to school-wide program effects are highly correlated (.95) as well.
NCEs and scale scores matched 99% of the time on whether or not the program indicator
variable was statistically significant.

The use of longitudinal analysis of educational data encompasses a wide array
of applications from individual growth curve modeling to program evaluation and
school performance modeling. We focus on the latter of these uses, especially as they
pertain to the general issue of school accountability. These models are often
constrained by data availability, in terms of the number of time points available, the
completeness of data, and the metric available for analysis. As school districts
become more sophisticated in record keeping ability, it is now more common and
less problematic to acquire multiple years of data on students, who are linked with a
unique identifier across years. Recent advances in multilevel modeling techniques
allow for the use of unbalanced data, make unequal timing of outcomes, and
missing data less of a barrier to analysis than repeated measures ANOVA once
presented (Hox, 2002; Raudenbush & Bryk, 2002). Given the recent trend towards
accountability that is based on outcomes (Hanushek & Raymond, 2001), it is relevant



to consider whether the metric used for the longitudinal analysis affects inferences.
As Seltzer, Frank, and Bryk (1994) demonstrated, the metric matters when
attempting to model individual growth trajectories. Seltzer et al. concluded that
scale scores are the most appropriate metric for growth curve modeling.
Theoretically, Item Response Theory (IRT)-based scale scores represent content
mastery on a continuum and may be used to measure absolute academic progress
over time; whereas, NCEs represent a relative standing compared to a norming
population. Because NCEs represent a relative position from year to year, and not a
change from the previous year, it cannot present a complete picture of student
academic progress. Two issues give rise to this analysis: one, schools or school
districts are often unable to provide scale scores and are, at best, able to provide
normal curve equivalents (NCEs).1 Two, school districts periodically change tests
(publishers), but desire to conduct longitudinal evaluations across these different
tests. Test publishers use different methods to scale their tests, and rarely is
information available equating scores from one test to another; NCEs may be more
comparable because they are relative scores. Within the longitudinal analysis
framework, two questions arise: one, to what extent the metric matters when the
focus is school performance over time; and two, to what extent the metric matters
when the focus is program evaluation.

While the properties of both scale scores and NCEs are understood, the
empirical evidence against the use of NCEs for longitudinal models utilizing
individual student data to examine school performance over time is lacking. Hence,
this analysis incorporates Monte Carlo methods and utilizes a three-level
hierarchical model to compare the results of growth models using scale scores
against growth models using NCEs on the same set of students. In general, the goal
is to apply a three-level hierarchical linear model (HLM) with test scores nested
within students at level one, students nested within schools at level two, and schools
at level three, to determine the effect of the metric on school-level estimates of initial
status, growth, and a school program participation indicator variable.

Background

Methodologically advanced methods of examining school performance or
evaluating program effectiveness take both the nature of the data into consideration,

1 Often districts report (understand) national percentile ranks (NPR), which can easily be converted
to NCEs.



and attempt to mitigate the effects of potential confounding factors (PCF). The short-
comings of simply examining school means (Aitkin & Longford, 1986), ignoring the
nested nature of educational data (Raudenbush & Bryk, 2002), or the differing
meaning of variables at different levels of aggregation (Burstein, 1980) are generally
taken into account in recent sound efforts to discern school effectiveness. The effects
of PCFs, in non-randomized, cross-sectional designs (Campbell & Stanley, 1963) and
limitations of pre-post designs (Bryk & Wesiburg, 1977; Raudenbush, 2001;
Raudenbush & Bryk, 1987) in making inferences about school or program effects
(i.e., change in student outcomes due to a hypothesized cause) leads us to consider
the advantages of examining growth trajectories to make inferences about change
(Raudenbush & Bryk, 2002; Rogosa, Brandt, & Zimowski, 1982; Willet, Singer, &
Martin, 1998). The usefulness of hierarchical longitudinal growth models that
examine individual growth trajectories and make subsequent inferences about
program effectiveness have been posited and applied for some time (Heck, 2000;
Willms & Raudenbush, 1989); their use increasing with both computing power and
data availability (see for example Goldschmidt, 2002b; Heck, 2000; Ramirez, Yuen,
Ramey, & Pasta, 1991). Specifying an adequate model that correctly captures the
structure of growth depends upon the nature of the data being modeled
(Raudenbush, 2001).

Theoretical understanding of the optimum model is often confronted with the
empirical realism of the data, however. The advantages of longitudinal growth
models may be a mute point if proper data cannot be compiled. Assuming that
student records have been accurately matched, and that there are at least three
measurement occasions, one can consider a longitudinal? evaluation model. These
models have examined diverse outcomes such as growth in mathematics grade
equivalents (GE), (Wilms & Jacobson, 1990) early child vocabulary growth
Huttenlocher, Haight, Bryk, and Seltzer (1991), early reading achievement growth
(Goldschmidt, 2002a), and feelings of isolation (Osgood & Smith, 1995). While these
models are often referred to as longitudinal growth models, they often, as in the case
of Osgood and Smith, for example, evaluate an outcome that is intended to change,
though not necessarily grow.

The scale is important in drawing conclusions from individual growth curves
(Yen, 1986). The key element is that the outcome must have constant meaning over

2 Which we differentiate from a pre-post, or simple gain score model.



time (Raudenbush, 2001). As Seltzer et al. (1994) demonstrated, the metric matters
when looking at student progress over time. Seltzer et al. focused on the inadequacy
of grade equivalents (GEs). Theoretically, the optimal metric to use when examining
change is a vertically equated IRT based scale score because it is on an interval scale
and is comparable across grades (Hambleton & Swaminathan, 1987). Thus a change
in a scale score from year to year is an absolute measure of academic progress,
irrespective of grade. However, equating is generally designed to compare
contiguous grade pairs (Yen, 1986) and scales may be less meaningful as the grade
span increases. The NCE are based on national percentile ranks, but are
standardized to have a mean of 50 and a standard deviation of 21.06, and also have
an equal interval scale (Worthen, White, Fan, & Sudweeks, 1999). As noted, NCEs
cannot adequately describe absolute achievement growth because it places students
at a relative position at each test occasion. A change in this relative position does not
necessarily functionally correspond to absolute achievement gains. One argument
against the use of NCEs is that it places students on a relative position, which
guarantees “winners” and “losers.” But, it should be noted that both NCEs and IRT
based scale scores are based on a representative norming sample that is generally
conducted approximately every five to eight years. This implies that all scores are
potentially based on a fixed standard for some period of time.

The focus of this discussion has centered on the correct metric and ensuing
interpretation of individual student growth trajectories, but not on whether results
pertaining to school performance would be either statistically or substantively
altered by using NCE scores rather than scale scores. The questions that arise are
whether the results using NCEs or scale scores would substantively change the
inferences made about school performance or program effectiveness, within the
context of a hierarchical longitudinal evaluation. This is relevant in that school
accountability systems compare school performance, but accurate models do not
simply evaluate school aggregate performance because that suffers biases brought
about due to aggregation (Aitkin & Longford, 1986), and incorrectly mixes
inferences concerning student and school level variables (Burstein, 1980). Further,
program evaluation may not simply consist of comparing two groups of
students—treatment vs. control—rather it may consist of evaluating the context in
which students are placed (i.e., individual students are not assigned to a group,
rather the entire school may be part of a reform effort). As in general school
performance modeling, the question of interest is to what extent the program school



performs better than non-program school, with the same notion of value added as in
accountability models. Given that NCE scores are available for analysis substantially
more often than scale scores, it is important to compare school level results using
both NCEs and scale scores.

Data

The data are from a large, racially integrated, urban school district that enrolls
approximately 65,000 students. We have four years of panel data beginning with the
1997-98 (1998) school year and ending with the 2000-2001 (2001) school year. The
outcome measures are reading and mathematics Stanford Achievement Test, v9,
(SAT-9) scores, for which we have both NCEs and scale scores. In order to focus this
analysis on the effect of the metric and not confound school-effect results with issues
of cross-classification (Rashbash & Goldstein, 1994; Raudenbush, 1993) we limit our
sample to students who attended the same school between 1998 and 2001. We
further reduce our sample by excluding students with missing demographic or
outcome information (although these are certainly not requirements for longitudinal
analyses). Table 1 presents the SAT-9 reading and mathematics means for each of
the years that we have data. Although not inherently comparable, both metrics
demonstrate an increase between 1998 and 2001 of between 12% and 15%. Simple
zero-order correlations between students’ scores measured by NCEs and scale scores
indicate that they are only moderately correlated in each year (range r = .59 to .68).

Table 1

Means of NCEs and Scale Scores by Year

Reading Mathematics
Year NCE SS NCE SS
1998 385 561.2 43.3 560.8
(20.1) (40.7) (22.3) (41.0)
1999 40.8 595.1 49.2 596.7
(20.5) (44.4) (22.1) (43.8)
2000 41.2 619.7 47.0 617.6
(20.6) (42.1) (21.3) (41.3)
2001 43.2 640.6 48.7 644.3
(19.7) (37.8) (21.9) (40.6)

Note. N = 7,856 students; standard deviation in parentheses.



The final sample that we utilize consists of 7,856 students, representing 31,424
test scores for each content area. Student demographic characteristics are presented
in Table 2. The sample that forms the basis for the simulation study (forming the
population from which we draw samples) matches fairly closely the district as a
whole, but more importantly is a substantially diverse sample, intimating that
results are not biased by an unrealistically homogeneous sample.

We utilize school context measures that are constructed from the aggregate
student characteristics for each school. We also use an indicator variable that
identifies whether schools participated in a school-wide school reform effort
(program schools). Fifteen percent of schools are classified as program schools.

Methodology

We employ a Monte Carlo method to examine the consequences of using NCE
scores instead of scaled scores when using a three level hierarchical growth model in
monitoring school performance. Comparing the key parameters of interest allows us
to examine whether the results are statistically or substantively similar. Monte Carlo
techniques allow us to simulate key factors of interest so that we can obtain more
general information about the differences between the results pertaining to each test
metric, when those measures are used for monitoring school performance over time.

Table 2

Student Characteristics

Proportion

Student characteristic District Sample
Female 0.50 0.49
African-American 0.21 0.21
Asian 0.17 0.13
Hispanic 0.41 0.45
Other 0.03 0.03
White 0.19 0.18
ELL 0.37 0.49
Free/reduced lunch 0.67 0.88
Special ed. 0.07 0.08

Note. N = 7,856 students



In general, the Monte Carlo method involves randomly generating data under
specific conditions. However, in this study, we consider the data described above as
the population from which we will sample repeatedly for a Monte Carlo study. Each
school has an average sample size of 745 students. Given that the number of
students per school is extremely large, we can comfortably say that repeated
samples hold the i.i.d assumption. The main factors of the Monte Carlo study are the
following: the number of students within schools, the number of schools, grade
levels, and content areas. Table 3 summarizes the conditions. In each of the sampling
conditions, we sample the population data 2,000 times. We use SAS™ to sample and
generate the datasets and HLM™ to run the hierarchical growth models.

Depending upon content area, the choice of NCE or scale scores might lead to
different consequences in terms of inferences concerning school performance. For
example, in a content area in which students show remarkable progress over time,
scale scores may be a better metric in detecting progress than NCE scores, because
NCE scores might wash out the magnitude of absolute growth over time.

In this study, we focus on the four key parameters estimated in a three-level
hierarchical model (described below) for measuring school performance over time:

1. school mean initial status for non-program schools;
2. the difference between non-program schools and program schools in

initial status;

Table 3
Sampling Conditions for Monte Carlo Study

Total number Students sampled
of schools Percent Mean n
60 25% 313
60 50% 65.6
60 75% 98.5
60 100% 130.9




3. the school mean rate of change for non-program schools; and,
4. the difference between non-program and program schools in the mean

rate of change.

For each simulation condition, we estimate Pearson correlations between each
of the parameters based on NCE scores and the corresponding parameters based on
scale scores (see Table 4). In addition, school rankings based on the magnitudes of
school mean initial status and school mean rate of change3 are calculated for the
cases of NCE and scale scores. We compare Spearman and Kendall’s Tau rank-order
correlations based on the estimated school rankings between the two metrics (see
Table 5).

Briefly, the three-level model is as follows:
Y = Tlo+ Ty + €y (1)

where Yy; is the outcome at time t for student i in school j with a as a time parameter
measured in school years. Since growth trajectories are assumed to vary across
students, at level 2 for the initial status at time = 0:

Tloi = _oop + _ogpXaiy + -« + _opXpij + Fojjs (2)

where there are p = 1 to P student-level predictors (e.g. student background
characteristics). Similarly, for the growth trajectories

Ty = gt _uXa oo o Xy 1 (3)

The effects of student characteristics (X;’s) are assumed to vary across schools at
level 3. For example, for mean initial status for school j:

_00j = _ooo + _oonZsj + Uggp (5)

where Z is a 1/0 indicator variable denoting school program membership. For
student-level effects on initial status for school j:

_opi = _opo F _op1Zyj T Uy (6)
For the mean rate of change for school j:
_10p = _100 T _101Zyj Uy (7)

and for the student level effects on the student rate of change for school j:

3 That is based on the fitted values for school mean initial status and rate of change.



_1pi = _1po T _1paZaj T Uy, (8)

Within each condition we run four models. Model one is the unconditional
model used to partition the unconditional variation in the outcome among time,
students, and schools, and is used as a basis for comparing the fit of subsequent
more complex models (Raudenbush & Bryk, 2002). Model two includes only student
level covariates, as these are potentially associated with changes in achievement and
account for between school differences in enrollment; thereby potentially reducing
the between school variation in the outcome. Model three includes the student level
covariates at level two and the program indicator variable at level three. This model
attempts to capture differences between program and non-program schools,
accounting for differences in student enrollment, but excluding other school
contextual factors. Model four includes all of the variables included in model three,

Table 4

Summary Parameter Estimates Compared

Question Scale scores NCEs
1) _000 VS. _000
2) _o001 VS. _o001
3) _100 VS. _100
4) _101 VS. _101

Note. NCE = normal curve equivalent.

Table 5
Fitted Values Generating School Ranks

School Scale scores NCEs
Initial status Do, Do
Rate of change D1g; B1g;

Note. NCE = normal curve equivalent.



and additional school context variables to examine whether the program effect is
moderated by school context. The full model (model 4) is displayed in the
Appendix.

Results

The results of the simulations demonstrate that the legitimacy of using NCEs
instead scale scores depends on the intended objective. The results for each of the
conditions, models, and content areas are presented below. Comparisons that
involve the actual estimated coefficients are recast into effect sizes, given the obvious
difference in scale between NCEs and scale scores. Although not of primary interest,
we briefly present the substantive results of the tested models. Tables 6 and 7
summarize the results of the full model for each of the sampling conditions. The
estimated coefficients are presented in effect sizes that we define as the estimated
coefficient divided by the outcome standard deviation (Cooper & Hedges, 1994).4
Generally the magnitude of the estimated effects, by content area are consistent
between NCEs and scale scores—with one major exception, growth, which we
discuss in more detail below. Although we do not present detailed results
concerning the parameters estimates here, it is important to note that the estimates
were normally distributed with standard deviations decreasing as sample size
increased. The results in Table 8 give one indication of how well the models
perform, in terms of reducing the unconditional between-school variation in growth.
Overall, the full model accounts for approximately 43% to 52% of the variation in the
Reading growth rate and approximately 16% to 17% in the mathematics growth rate.
The marginal impact of adding school context variables (after accounting for student
covariates)—that is the variance reduction from model 2 to model 4—is much more
tightly aligned between the NCE and scale score models; although they do differ by
content area. The addition of school context has a consistent effect across sampling
conditions and metric, within content area.

Except for the growth parameter estimates, within content area, the outcome
metric and the sampling condition would lead to consistent interpretations of the
associations of the covariates and their ability to reduce unconditional between-
school variation. However, our focus is whether the results would lead to

4For indicator variables this is strictly correct given these are group differences. Subsequently we will
utilize both the above definition for the effect size as well as another identified in Raudenbush and
Feng (2001).
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substantively consistent inferences about school and/or program performance,
when comparing models using NCEs and scale scores.

Table 6

Summary of Results Describing SAT-9 Reading Achievement — in Effect Size

25% 50% 75%

SAT-9 Reading Achievement NCE SS NCE SS NCE SS
Mean Initial status (gqq0)
Student Predictors

Special Education (gg) -0.47 -0.44 -0.47 -0.44 -0.47 -0.44

Low SES (9gz0) -0.36 -0.40 -0.35 -0.40 -0.35 -0.39

LEP (Jos0) -0.34 -0.35 -0.33 -0.34 -0.32 -0.33

Minority (9os0) -0.48 -0.54 -0.48 -0.54 -0.48 -0.53

Girl (goso) 0.10 0.10 0.10 0.10 0.10 0.10
School Predictors

LAAMP Effect (ggo1) 0.03 0.04 0.02 0.03 0.02 0.02

Minority (9gg,) -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

Low (Qogs) 0.13 0.10 0.17 0.15 0.20 0.17
Mean Growth (g;q0) 0.07 0.64 0.07 0.63 0.07 0.63
Student Predictors

Special Education (g;4,) 0.00 -0.03 0.00 -0.03 0.00 -0.03

Low SES (912) 0.05 0.06 0.05 0.06 0.05 0.06

LEP (9130) 0.07 0.07 0.07 0.07 0.07 0.07

Minority (g14) -0.03 -0.02 -0.03 -0.02 -0.03 -0.02

Girl (9:50) 0.01 0.01 0.01 0.01 0.01 0.01
School Predictors

LAAMP Effect (g,q;) 0.01 0.01 0.01 0.01 0.01 0.01

Minority (910,) 0.11 0.14 0.12 0.15 0.12 0.16

Low (Qy03) -0.08 -0.08 -0.08 -0.08 -0.08 -0.08

Note. NCE = normal curve equivalent, SS = scale scores; SES = socio-economic status, LEP =
limited English proficient, LAAMP = Los Angeles Annenberg Metropolitan Project.
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Table 7

Summary of Results Describing SAT-9 Mathematics Achievement — in Effect Size

SAT-9 Reading Achievement NCE SS NCE SS NCE SS
Mean Initial status (gyq0) 59.659 593.58 60.61 595.47 61.01 596.2
Student Predictors
Special Education (gg) -0.604 -0.546 -0.516 -0.554 -0.613 -0.555
Low SES (9gz0) -0.244 -0.243 -0.241 -0.239 -0.236 -0.235
LEP (Qos0) 0.029 0.038 0.040 0.051 0.046 0.057
Minority (gos) -0.582 -0.575 -0.578 -0.569 -0.576 -0.568
Girl (goso) -0.040 -0.044 -0.040 -0.045 -0.039 -0.044
School Predictors
LAAMP Effect (ggq1) -0.022 -0.021 -0.030 -0.033 -0.032 -0.035
Minority (goo,) -0.010 -0.010 -0.011 -0.012 -0.012 -0.012
Low (Qogs) -0.006 -0.023 0.036 0.021 0.046 0.031
Mean Growth (gq) 0.032 0.638 0.026 0.023 0.026 0.632
Student Predictors
Special Education (g;4,) 0.038 0.010 0.040 0.011 0.040 0.013
Low SES (912) 0.021 0.014 0.021 0.023 0.021 0.014
LEP (9130) 0.040 0.033 0.041 0.007 0.040 0.033
Minority (g14) 0.000 0.001 -0.001 0.009 -0.019 -0.005
Girl (9:50) 0.036 0.038 0.035 0.006 0.035 0.038
School Predictors
LAAMP Effect (g,¢;) 0.0252  0.0275 0.028 0.031 0.029 0.032
Minority (9;0,) 0.0009  0.0009 0.001 0.001 0.001 0.001
Low (Qy03) -0.0367  -0.0323 -0.04 -0.037 -0.04 -0.034

Note. NCE = normal curve equivalent, SS = scale scores; SES = socio-economic status, LEP =

limited English proficient, LAAMP = Los Angeles Annenberg Metropolitan Project.

12



Table 8

Percent Reduction in Between School Variation in Growth

Sampling Reading Math
Condition NCE SS NCE SS
Model 2to 4
25% 24.5 23.7 9.3 9.2
50% 24.4 25.5 9.6 9.7
75% 24.5 26.4 9.2 9.3
Model 1to 4
25% 43.8 52.2 16.8 16.8
50% 42.7 51.9 16.4 16.5
75% 429 52.3 16.1 16.1

Note. NCE = normal curve equivalent, SS = scale scores.

Hence, we turn to the correlations between mean initial status and growth rates
for models using scale scores vs. models using NCEs, the rank order correlations
among the fitted values for mean school initial status and mean school rates of
change for models using scale scores vs. models using NCEs, and the correlations
for the estimated difference between program and non-program schools for models
using scale scores vs. models using NCEs. Tables 9a through 9d present the
correlations for each of the models for each of the sampling conditions. We present
both Spearman rank-order correlations and Kendall’s Tau, which are both
appropriate for use with ordinal ranks (Allen & Yen, 1979). The correlations range
from a low of about .75 to a high of about .98 and average about .9. The Spearman
Correlations overall average is about .97 for initial status and .94 for growth. The

Table 9a

Correlations Between Estimated Coefficients — Model 1

Correlation Kendall (Tau) correlation

Sample Test type Initial status Growth Initial status Growth
R25 Read 0.988 0.936 0.925 0.806
Math 0.987 0.963 0.925 0.863
R50 Read 0.990 0.932 0.931 0.798
Math 0.988 0.964 0.929 0.870
R75 Read 0.991 0.932 0.935 0.798
Math 0.989 0.964 0.932 0.871

13



Table 9b

Correlations Between Estimated Coefficients — Model 2

Correlation Kendall (Tau) correlation

Sample Test type Initial status Growth Initial status Growth
R25 Read 0.964 0.914 0.857 0.779
Math 0.975 0.955 0.887 0.849
R50 Read 0.970 0.910 0.872 0.775
Math 0.978 0.956 0.898 0.857
R75 Read 0.974 0.908 0.881 0.776
Math 0.981 0.955 0.905 0.857

Table 9c

Correlations Between Estimated Coefficients — Model 3

Correlation Kendall (Tau) correlation

Sample Test type Initial status Growth Initial status Growth
R25 Read 0.963 0.916 0.856 0.781
Math 0.975 0.956 0.887 0.849
R50 Read 0.971 0.912 0.873 0.777
Math 0.978 0.958 0.897 0.858
R75 Read 0.974 0.910 0.882 0.776
Math 0.980 0.956 0.904 0.857

Table 9d

Correlations Between Estimated Coefficients — Model 4

Correlation Kendall (Tau) correlation

Sample Test type Initial status Growth Initial status Growth
R25 Read 0.939 0.897 0.817 0.754
Math 0.969 0.954 0.873 0.847
R50 Read 0.942 0.895 0.821 0.750
Math 0.972 0.956 0.880 0.856
R75 Read 0.943 0.896 0.826 0.748
Math 0.973 0.955 0.878 0.858

Kendall Tau correlations are slightly lower, with an overall average of .89 for initial
status and .82 for growth. The pattern across sampling conditions and models is

14



consistent for both correlation measures. That is, the correlations increase with
sample size and decrease with model complexity. However, it should be noted that
these changes are relatively small—generally about 4%, at the maximum, in either
direction. Figure 1 summarizes this relationship.>

M 0.98-1
H0.96-0.98
B0.94-0.96
H0.92-0.94
B0.9-0.92
[0.88-0.9
E0.86-0.88
[0.84-0.86
[©0.82-0.84
£0.8-0.82
00.78-0.8
00.76-0.78
®0.74-0.76
©0.72-0.74
Model 2 [0.7-0.72

Model 3 - R25
Model 4

Model 1

Figure 1. Correlation pattern between sampling condition and model — Reading SAT-9 growth.

We are, of course, most interested in the effects of the metric on growth as
this is the parameter estimate upon which the evaluation of school performance or
program effectiveness will be based. Hence, we next turn to the correlations of the
fitted values and effect sizes for growth. Tables 10a through 10d summarize the
results for each of the models and sampling conditions. The first column of Table 10
presents the correlation of the fitted school mean growth rates estimated using
NCEs and scale scores. These range between about .89 and .96, with a mean of about
.93. These correlations do not exhibit any pattern across sampling conditions or
model. We generate two effect sizes to standardize annual growth.

SWe present only one of the possible figures as an example. The remaining conditions are available
from the authors.
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Table 10a

Summary of Correlations Among Fitted Values and Effect Sizes for Growth — Model 1

Sample Test type Correlation ES1 ES2
FV Raude:it;gsh off. Ratio Difference Ratio Difference
R25 Read 0.936 0.812 0.113 -0.567 0.148 -8.792
Math 0.963 0.749 0.088 -0.596 0.095 -8.113
R50 Read 0.931 0.822 0.114 -0.568 0.147 -8.738
Math 0.964 0.736 0.089 -0.596 0.095 -7.970
R75 Read 0.932 0.823 0.114 -0.568 0.147 -8.725
Math 0.963 0.734 0.090 -0.596 0.096 -7.941
Note. FV = Fitted Value, ES = Effect Sizes.
Table 10b
Summary of Correlations Among Fitted Values and Effect Sizes for Growth — Model 2
Sample Test type Correlation ES1 ES2
FV Raude:it;gsh off. Ratio Difference Ratio Difference
R25 Read 0.914 0.788 0.116 -0.570 0.139 -11.388
Math 0.954 0.757 0.091 -0.595 0.098 -8.474
R50 Read 0.909 0.822 0.117 -0.570 0.139 -11.057
Math 0.956 0.743 0.092 -0.596 0.098 -8.277
R75 Read 0.908 0.859 2.023 0.672 2.413 18.419
Math 0.954 0.931 1.834 0.545 1.949 8.640
Note. FV = Fitted Value, ES = Effect Sizes.
Table 10c
Summary of Correlations Among Fitted Values and Effect Sizes for Growth — Model 3
Sample Test type Correlation ES1 ES2
FV Raude:it;gsh off. Ratio Difference Ratio Difference
R25 Read 0.916 0.780 0.114 -0.571 0.138 -11.430
Math 0.955 0.749 0.088 -0.595 0.094 -8.518
R50 Read 0.911 0.811 0.115 -0.571 0.137 -11.085
Math 0.958 0.733 0.088 -0.595 0.094 -8.318
R75 Read 0.909 0.860 2.023 0.670 2.424 18.509
Math 0.956 0.931 1.834 0.543 1.950 8.653

Note. FV = Fitted Value, ES = Effect Sizes.
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Table 10d

Summary of Correlations Among Fitted Values and Effect Sizes for Growth — Model 4

Sample Test type Correlation ES1 ES2
FV Raude:it;gsh eff. Ratio Difference Ratio Difference
R25 Read 0.896 0.703 0.160 -0.562 0.194 -12.761
Math 0.953 0.621 0.096 -0.593 0.103 -8.863
R50 Read 0.895 0.664 0.163 -0.563 0.193 -12.542
Math 0.955 0.635 0.099 -0.593 0.106 -8.678
R75 Read 0.895 0.685 0.164 -0.562 0.192 -12.574
Math 0.954 0.934 0.099 -0.593 0.105 -8.621

Note. FV = Fitted Value, ES = Effect Sizes.

The first (ES1) is based on the general effect size presented in Cooper and
Hedges (1994), while the second (ES2) is based on Raudenbush and Feng (2001). We
define ES1 as the estimated growth parameter (y,o,), divided by the sample standard
deviation of the outcome. ES2 is defined as the estimated growth parameter (Vo)
divided by the standard deviation of true change (t,,"?) and has the advantage of
excluding the sampling variance (Raudenbush & Feng). The correlations of these
effect sizes are presented in column two. These range from approximately .62 to .93,
and average about .78. These correlations, while still high, are expectantly lower as
they are based on parameter estimates for growth and for the standard deviation of
growth, which vary with each of the 2,000 simulations for each condition. The
remaining four columns present the ratios and absolute differences for ES1 and ES2,
respectively. We present both ratios and absolute differences as estimates near zero
tend to disproportional effects on the ratio. The results in Tables 10a through 10d
further corroborate the results presented above in terms of actual estimates of
achievement growth. That is, NCE scores significantly and consistently under-
estimate annual growth. This result is consistent across sampling conditions and
model. The ratios of effect sizes for both ES1 and ES2 clearly demonstrate that actual
growth is under-estimated using NCEs. In fact we calculate an index of relative bias
(RB), as in Krull and MacKinnon (2001). In this case we define

RB = (EslooNCE — ES,00™)/ ESy™,
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where each ES (1 and 2) is calculated as noted above. This can be used to estimate
the proportional under/over estimate using NCEs vs. scale scores. Figure 26 presents
association between RB and the actual magnitude of annual growth (as measured by
scale scores) in effect size units. We use this chart to demonstrate that the NCE
metric under-estimates growth by about 85% and that this proportion is inversely
related to the magnitude of growth. However, it is important to note that the range
of growth and the corresponding range of RB are relatively small.

Hence, the metric does not change the substantive inferences made from
ranking schools based on their fitted growth estimates, but matters when the
inferences concern inferences about actual absolute growth.

Finally, we present the simulation results for evaluating school-wide program
effects. Tables 11a and 11b display the relevant results. The first two columns
present the correlations among the IS and growth estimates using NCEs and scale
scores. In every case these correlations were at least .94. The next four columns
present the ratios and absolute differences in effect sizes. In general, the program
effect sizes were relatively small, which tends to make our comparison criteria
take on extreme values in some

6The results in Figures 2, 3, and 4 are based on model 4.
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Figure 2. Comparison of relative bias to the effect size of growth — SAT-9 Reading (in scale scores).

Table 11a
Summary of Program Effect Sizes for SAT-9 Achievement — Model 3

Correlation Effect size ratio Effect size difference Agreement

Sample Test type IS?;[:?SI Growth IS?;[:?SI Growth IS?;[:?SI Growth  (growth)
R25 Read 0.982 0.943 0.686 0.934 -0.016 0.006 0.993

Math 0.988 0.950 1.155 -0.267 -0.007 -0.001 0.998
R50 Read 0.982 0.941 0.843 1.417 -0.015 0.006 1.000

Math 0.989 0.943 0.884 0.891 -0.006 -0.002 1.000
R75 Read 0.984 0.942 0.873 2.220 -0.014 0.006 1.000

Math 0.990 0.939 0.910 0.904 -0.005 -0.002 1.000
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Table 11b

Summary of Program Effect Sizes for SAT-9 Achievement — Model 4

Correlation Effect size ratio Effect size difference Agreement

Sample Test type IS?;[:?SI Growth IS?;[:?SI Growth IS?;[:?SI Growth  (growth)
R25 Read 0.988 0.954 1.149 0.348 -0.008 0.004 0.985

Math 0.982 0.940 0.793 0.812 0.000 -0.003 0.992
R50 Read 0.990 0.950 0.965 0.693 -0.004 0.003 0.994

Math 0.984 0.940 0.966 0.880 0.003 -0.004 0.999
R75 Read 0.985 0.940 0.265 1.146 -0.002 0.002 1.000

Math 0.990 0.948 0.710 0.878 0.004 -0.004 1.000

instances. That is estimated ES1’s that are very small may have small absolute
differences, but have relatively large ratios. Substantively estimated ES1 that are
close to zero for NCEs are close to zero for scale scores as well—leading to the same
inferences regarding program effectiveness. Tables 11a and 11b, therefore, present
both the ratio of ES1,.: to ESlg, but also the mean differences. The tables also
display the proportion of the time that there is agreement in statistical significance
program indicator variable between models using NCE and models using scale
scores. The results indicate that the two metrics agree almost 100% of the time.

As noted, due to the relatively small ES1 for growth, we again use the RB
measure. Figures 3 and 4 plot the relative bias as a function of the actual program
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Figure 3. Relationship between relative bias in NCEs for initial status.

effect estimates, based on scale scores. These figures demonstrate two important
points. One, the RB is largest when the actual scale score effect is close to zero
(which, as noted, often generates very small actual differences in effect sizes, but
very large ratios). And two, The RB decreases with the increase of the absolute value
of the program effect size. This result holds true for both initial status and growth.
The correlation, for SAT-9 reading, between ES1,. and ES1lg is .986 and .940 for

initial status and growth respectively

Hence, the simulations indicate that metric does not change inferences of
whether or not a program is statistically or substantively significant. It is interesting
to note that while NCEs significantly under estimate actual absolute growth, they
accurately represent the difference between program and non-program schools in

that growth.
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Discussion

Recent legislation has increased the need to accurately evaluate school
performance. School accountability has moved beyond simply comparing school
means in league tables to more advanced techniques, such as hierarchical linear
growth models. Coinciding educationists’ increased focus on accountability is
increased public interest in accountability, as demonstrated by the growing demand
for school quality information. Given both the ubiquitousness of NCE scores and the
ease of interpretation, it is valuable to ascertain the sensitivity of school level results
to the choice of the metric. Further, given the volatility in the use of tests, it is
important to ascertain whether NCE scores produce estimates that result in
consistent policy implications compared to those derived using scale scores. The
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simulation results indicate that the effect of the metric is tied to the evaluation
objective. We find that the correlation between mean initial status and growth rates
for models using scale scores vs. models using NCEs is strong. The simulation
results also suggest that this relationship is affected, to a small, extent, by the sample
size and the complexity of the model used. The effect of model complexity is
stronger than the effect of sample size. The results for the rank order correlations
between fitted values for mean school initial status and mean school rates of change,
for models using scale scores vs. models using NCEs, are also consistently strong.
These results are invariant across sample size and model complexity. This
demonstrates that if the objective of the evaluation is to rank schools then the choice
of NCE or scale score will not change the ensuing school ranking. NCEs can
accurately rank schools.

Further we find that the correlation of program effect sizes for models using
scale scores vs. NCEs are strong and consistent. This means that evaluations based
on NCEs and using hierarchical longitudinal models will be able to accurately
estimate both initial differences among program and non-program schools, and
whether the program has an effect on growth—both in terms of statistical and
substantive significance.

Still, it is important to reiterate that when estimating mean school growth,
NCEs will yield misleading absolute achievement growth estimates. In fact the
simulation results indicate that using NCEs under-estimate growth by about 85%.
Interpreting growth using NCEs, without additional information, is likely to be
difficult, despite the fact that students maintaining the same NCE score from one
year to the next must have demonstrated some absolute growth in order to maintain
their relative standing. Even with additional information, the estimated range of
growth in the scale score metric, derived from NCEs, will be imprecise. However,
ranking schools by the amount of growth they exhibit does yield consistent results.

The results of this analysis provide some guidance in the planning of
evaluations or monitoring of school performance; this is particularly relevant for
program evaluations or school performance systems that attempt to take advantage
of longitudinal data sources, but are limited to conducting analyses with NCE
scores. These results may be particularly relevant as school districts change tests, but
desire to conduct longitudinal evaluations across the different tests—as NCEs may
be more comparable across tests than IRT based scale scores. As Linn (2000)
demonstrated there will clearly be effects from switching tests, but these can be
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handled within the model (Goldschmidt & Swigert, 2001). The simulations also
demonstrate that the results based on a 25% sample are very consistent with results
based on the full sample. This finding may be particularly relevant for longitudinal
methods that do not rely on panel data, such as HLM models for estimating school
effects proposed by Willms and Raudenbush (1989). The effects of NCEs vs. scale
scores in these types of models are unknown and warrant further research. These
results allow program evaluators and school accountability analysts more flexibility
in designing evaluations—especially when cost is an issue. While the results indicate
that schools can be ranked and programs evaluated consistently using longitudinal
methods and NCE scores, ranks should be interpreted carefully. Confidence
intervals of estimated effects generally overlap substantially, which means that
caution should be exercised when comparing schools in this manner (Goldstein et
al., 1993). Further, we are by no means advocating that using a single standardized
measure be the sole criteria upon which school or program quality ought to be
judged.
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Appendix

Level-1 Model
Y =P0 + P1*(TIME) + E
Level-2 Model
PO = BOO + BO1*(SPED1) + B02*(LOW1) + BO3*(LEP1) + B04*(MINOR)
+ BO5*(GIRL_1) + RO
P1 = B10 + B11*(SPED1) + B12*(LOW1) + B13*(LEP1) + B14*(MINOR)
+ B15%(GIRL_1) + R1
Level-3 Model
B0O = G000 + GO01(MEDLAMP) + G0O02(MMINOR?2) + G003(MLOW?1) + U00
BO1 = G010
B02 = G020
B03 = G030
B04 = G040
BOS5 = G050
B10 = G100 + G101(MEDLAMP) + G102(MMINOR?2) + G103(MLOW?1) + U10
B1l = G110
B12 = G120
B13 = G130
B14 = G140
B15 = G150
Where:
Time = years Coded as 0 =1998, 1 =1999....)
SPED1 = Special Education (0 = no 1 = yes)
LOW1 = (proxy is free/reduced lunch status) (0= no 1 = yes)
LEP1 = English Language Learner (0= no 1 = yes)
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MINOR = Minority (i.e., non-White) (0= no 1 = yes)

GIRL = gender = female (0= no 1 = yes)

MEDLAAMP = school participated in school-wide reform (0= no 1 = yes)
MINOR2 = school mean percentage of MINOR

MLOW1 = school mean percentage of LOW1.
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